> Please show all your work and write your answer on the answer line unless otherwise indicated by the problem. Please read the questions carefully. You have 20 minutes for the quiz.

Name: ID number

1. For the curve given by $r(t)=\left\langle-\sqrt{18} t, e^{-3 t}, e^{3 t}\right\rangle$, write in the following blanks, in simplified terms, the following expressions.
(a) $r^{\prime}(t)=\langle\quad, \quad\rangle$
(b) $r^{\prime \prime}(t)=\langle\quad, \quad, \quad\rangle$
(c) the curvature at $t=0: \kappa(0)=$
(d) the length of the curve from $t=0$ to $t=1$ : $\qquad$

$$
\begin{aligned}
r^{\prime}(t) & =\left\langle-\sqrt{18},-3 e^{-3 t}, 3 e^{3 t}\right\rangle \\
r^{\prime \prime}(t) & =\left\langle 0,9 e^{-3 t}, 9 e^{3 t}\right\rangle
\end{aligned}
$$

So

$$
\begin{aligned}
& \kappa=\frac{\left\|r^{\prime} \times r^{\prime \prime}\right\|}{\left\|r^{\prime}\right\|^{3}} \\
& \left\|r^{\prime}(0) \times r^{\prime \prime}(0)\right\|=27 \sqrt{6}
\end{aligned}
$$

therefore:

$$
\kappa(0)=\frac{\sqrt{2}}{4}
$$

and:

$$
\int_{0}^{1} \sqrt{18+9 e^{-3 t}+9 e^{3 t}} d t=\int_{0}^{1} 3 e^{3 t}+3 e^{-3 t} d t=e^{3}-e^{-3}
$$

2. Find the limits, if they exist for:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}}{3 x^{2}+y^{2}}
$$

(a) Along the $x$-axis:
(b) Along the line $y=m x$ : $\qquad$
(c) The limit is: $\qquad$
(d) Would it be possible to find values of $x$ and $y$ such that $\left(x^{2}+y^{2}\right)<10^{-200}$ but $\left|\frac{3 x^{2}}{3 x^{2}+y^{2}}-1\right|>$ $1 / 2$ ? $\qquad$
(a) 1
(b) $\frac{3}{3+m^{2}}$
(c) does not exist
(d) yes, because along the $y$ axis, the function goes to 0 , therefore aribtrarily close to 0 , the function will go close to 1 and 0 depending how you approach it. Therefore you can always find points that are greater than $1 / 2$ away from 1 .

